
By Junwon Choi & Steven Lu Chen

Reddit
Social Network Analysis
GraphSAGE | Graph Attention Networks (GAT) | FlashAttention

UCLA DataRes Research, Winter 2023

Project Structure

PyTorch Geometric - Reddit Dataset

Predict the community of each post/comment based on the graph structure and features of
post/comment. Evaluate different models appropriate for this node classification task.

GAT (PyTorch Geometric) FlashAttention (Hazy Research)

Evaluate performance

Compare performance

Evaluate performance

Goal:

GraphSAGE

Evaluate performance

About the work environment

Remote workstation sponsored by:

Hardware:

GPU: NVIDIA GeForce GPU (24.576 GB)

CPU: AMD Ryzen Threadripper PRO 5955WX 16-Cores (x86_64 | 32-bit, 64-bit)

RAM: 62 GB total, 8 GB swap

Software:

Platform: Jupyter Notebook | VS Code (Remote - SSH Extension)

Language/Environment: Python 3.10 / Conda

Main packages/tools: torch, pyg, numpy

GNNs: Spectral vs. non-Spectral Approach

Spectral non-SpectralFeatures

Convolutional
Operation

Graph Structure
Encoding

Global vs. Local
Perspective

Efficiency

Generalization

Uses spectral decomposition of graph
Laplacian

Uses a neighborhood aggregation
operation

Relies on node features & connectivity
information

Uses eigenvalues & eigenvectors of
graph Laplacian to encode graph
structure

Offers global perspective of graph
structure

More flexible in modeling local graph
structure

Computationally efficient for regular
graph structures Can handle irregular graph structures

Generalized better to unseen graphs
with similar structural properties

Generalizes better to graphs with different
structures

About the dataset:

Nodes: 232,965

❏ Represent posts/comments

Edges: 114,615,892 (weighted)

❏ Represent relationships between nodes (e.g. a comment responding to a post)

Features: 602

❏ Associated features of each node:

❏ (e.g. text of post/comment and met)

❏ Metadata (e.g. author, subreddit name)

Classes: 41

❏ Each corresponds to a specific community already categorized by PyTorch Geometric

Collection of Reddit posts and associated comments, represented as a directed graph.

Models Used
GraphSAGE

Graph Attention Networks (GAT)

GraphSAGE

Type of framework for inductive representation learning on large graphs (>100,000 nodes)

GraphSAGE leverages node feature information to generate node embeddings for previously

unseen data, instead of training individual embeddings for each node; i.e., embeddings are

generated through sampling and aggregating features from the local neighborhood of each node.

Unlike previous node embedding approaches, GraphSAGE allows us to train GNNs even if

individual nodes or portions of the graph are unseen.

GraphSAGE

GraphSAGE

Paper Results:

Graph Attention Networks (GAT)

Type of non-spectral GNN that uses self-attention mechanisms to weight the contribution

of neighboring nodes during message passing.

Modification of Graph Convolutional Networks (GCNs).

Instead of using a fixed-weight filter to aggregate information from neighbors, GATs use

self-attention mechanisms to to learn a different weight for each neighbor node based

on feature representation of nodes.

GATs can selectively attend to most relevant neighbors for each node, which useful in

graphs with complex structures.

Graph Attention Networks (GAT) - Architecture

Attention
Coefficient

Normalized
Attention
Coefficient

Graph Attention Networks (GAT) - Architecture

Updated representations
of the ith node (output
feature)

αij is used to compute linear
combination of features
corresponding to them

multi-head attention + concatenation

averaging used for final layer (prediction)

Graph Attention Networks (GAT)

Graph Attention Networks (GAT)

Paper Datasets:

Graph Attention Networks (GAT)

Paper Results:

GraphSAGE vs. Graph Attention Networks

GraphSAGE vs. Graph Attention Networks

Potential reasons for difference in performance:

❏ SAGE is more efficient in aggregating neighbor information

❏ SAGE model computes node representations by aggregating the representations of its neighbors using a mean or

max-pooling operation.

❏ GAT model uses an attention mechanism to weight the neighbor representations, which may not be as efficient when the

neighborhood sizes are large.

❏ SAGE can better capture local graph structure

❏ SAGE model aggregates neighbor representations by performing a fixed number of message-passing steps.

❏ GAT model uses an attention mechanism to weight the neighbor representation.

GraphSAGE vs. Graph Attention Networks

Potential reasons for difference in performance:

❏ PyTorch Geometric Reddit dataset may be better suited for SAGE

❏ If the graph has many small subgraphs, the SAGE model may be better at capturing the local structure within

each subgraph

❏ GAT’s hyperparameters may not be optimized for the PyTorch Geometric Reddit dataset

❏ GAT model has several hyperparameters that can affect its performance, such as the number of attention

heads, the hidden dimension size, and the dropout rate

Next steps

❏ Apply FlashAttention
❏ Community Detection

❏ Challenge: Find and configure
memory-efficient methods to
identify and visualize groups in
graph data
❏ NetworkX
❏ graph tool

❏ Network evolution

FlashAttention by Hazy Research at Stanford

Uses self-attention mechanisms similarly to GATs, but aims to further reduce memory

usage by a process called tiling.

FlashAttention is IO-aware, which means it accounts for reads and writes across various

levels of GPU memory. Overall, it requires fewer accesses to the GPU’s high bandwidth

memory (HBM) and is optimized for a variety of static RAM sizes.

Compared to more primitive attention mechanisms, FlashAttention boasts:

❏ faster model training

❏ higher quality models

❏ greater memory efficiency

FlashAttention by Hazy Research at Stanford

FlashAttention by Hazy Research at Stanford

Faster model
training:

FlashAttention by Hazy Research at Stanford

Higher quality
models:

FlashAttention by Hazy Research at Stanford

Reduced
memory usage:

References

1. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
Attention Networks. arXiv preprint arXiv:1710.10903 [stat.ML], 2018.

2. Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and Memory-Efficient
Exact Attention with IO-Awareness. arXiv preprint arXiv:2205.14135v2 [cs.LG], 2022

3. William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs. arXiv
preprint arXiv:1706.02216v4 [cs.SI], 2018

4. https://github.com/pyg-team/pytorch_geometric

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://github.com/pyg-team/pytorch_geometric

