& PyG
@ reddit
Reddit

Social Network Analysis

GraphSAGE | Graph Attention Networks (GAT) | FlashAttention

UCLA DataRes Research, Winter 2023 By Junwon Choi & Steven Lu Chen

Project Structure

Goal: Predict the community of each post/comment based on the graph structure and features of
post/comment. Evaluate different models appropriate for this node classification task.

PyTorch Geometric - Reddit Dataset

_— | T

GraphSAGE GAT (PyTorch Geometric) FlashAttention (Hazy Research)

| |

Evaluate performance Evaluate performance Evaluate performance

e =

Compare performance

About the work environment

Hardware:

GPU: NVIDIA GeForce GPU (24.576 GB)

CPU: AMD Ryzen Threadripper PRO 5955WX 16-Cores (x86_64 | 32-bit, 64-bit)
RAM: 62 GB total, 8 GB swap

Software:

Platform: Jupyter Notebook | VS Code (Remote - SSH Extension)
Language/Environment: Python 3.10 / Conda

Main packages/tools: torch, pyg, numpy

Al Safet
Remote workstation sponsored by: @ . UCL{

GNNs: Spectral vs. non-Spectral Approach

Spectral Features non-Spectral
Uses spectral decomposition of graph Convolutional Uses a neighborhood aggregation
Laplacian Operation operation
Uses eigenvalues & eigenvectors of Graph Structure Relies on node features & connectivity
graph Laplacian to encode graph P) information
structure Encoding
Offers global perspective of graph Global vs. Local More flexible in modeling local graph
structure Perspective structure
Computationally efficient for regular Efficiency Can handle irregular graph structures

graph structures

Generalized better to unseen graphs N Generalizes better to graphs with different
with similar structural properties Generalization structures

About the dataset: torch_geometric.datasets.reddit

Collection of Reddit posts and associated comments, represented as a directed graph.

Nodes: 232,965
A Represent posts/comments
Edges: 114,615,892 (weighted)
A Represent relationships between nodes (e.g. a comment responding to a post)
Features: 602
A Associated features of each node:
d (e.g. text of post/comment and met)
A Metadata (e.g. author, subreddit name)

Classes: 41

A Each corresponds to a specific community already categorized by PyTorch Geometric

GraphSAGE

Models Used

Graph Attention Networks (GAT)

GraphSAGE

Type of framework for inductive representation learning on large graphs (>100,000 nodes)

GraphSAGE leverages node feature information to generate node embeddings for previously
unseen data, instead of training individual embeddings for each node; i.e., embeddings are

generated through sampling and aggregating features from the local neighborhood of each node.

Unlike previous node embedding approaches, GraphSAGE allows us to train GNNs even if

individual nodes or portions of the graph are unseen.

GraphSAGE

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

GraphSAGE

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised
and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

Citation Reddit PPI
Name Unsup. F1 ~ Sup. F1 Unsup. F1 ~ Sup. F1 Unsup. F1 Sup. F1
Random 0.206 0.206 0.043 0.042 0.396 0.396
Raw features 0.575 0.575 0.585 0.585 0.422 0.422
DeepWalk 0.565 0.565 0.324 0.324 — —
DeepWalk + features 0.701 0.701 0.691 0.691 — —
GraphSAGE-GCN 0.742 0.772 0.908 0.930 0.465 0.500
GraphSAGE-mean 0.778 0.820 0.897 0.950 0.486 0.598
GraphSAGE-LSTM 0.788 0.832 0.907 0.954 0.482 0.612
. GraphSAGE-pool 0.798 0.839 0.892 0.948 0.502 0.600
Paper Results: :
% gain over feat. 39% 46% 55% 63% 19% 45%
A E 0.83 5] 006
T_g‘ 103 EE Training (per batch)
[Inference (full test set)
§ 10? T o081 H0.04 g
8w g £
o 10° S 079 1002 2
£ 1 - - —— Micro F1
| = 10 = — — Runtime
% 0.77 : 0.00
0 25 50 75

Neighborhood sample size

Figure 2: A: Timing experiments on Reddit data, with training batches of size 512 and inference
on the full test set (79,534 nodes). B: Model performance with respect to the size of the sampled
neighborhood, where the “neighborhood sample size” refers to the number of neighbors sampled at
each depth for K = 2 with §; = S5 (on the citation data using GraphSAGE-mean).

Graph Attention Networks (GAT)

Type of non-spectral GNN that uses self-attention mechanisms to weight the contribution

of neighboring nodes during message passing.

Modification of Graph Convolutional Networks (GCNs).

Instead of using a fixed-weight filter to aggregate information from neighbors, GATs use
self-attention mechanisms to to learn a different weight for each neighbor node based

on feature representation of nodes.

GATs can selectively attend to most relevant neighbors for each node, which useful in

graphs with complex structures.

Graph Attention Networks (GAT) - Architecture

Attention
Coefficient

[€i; = a(Wl_{i,Wﬁj)

exp(e;;)
> ken; €xp(eir)

a;; = softmax;(e;;) =

exp (LeakyReLU (a‘T [Wﬁi||Wﬁj]))

Oéij =

e €XD (LeakyReLU (&7 [Wh;|[Wiy))

Normalized
Attention
Coefficient

Graph Attention Networks (GAT) - Architecture

k! = Updated representations . .
of the ith node (output hi=o| Y ay;Wh,
feature) JEN;

multi-head attention + concatenation
a, is used to compute linear

comblnatlon of features
corresponding to them H - Z ak th

k=1 JEN;

averaging used for final layer (prediction)

iz

k=1jeN;

Graph Attention Networks (GAT)

concat/avg /
hy

Figure 1: Left: The attention mechanism a(WI_ii, Wl_i]) employed by our model, parametrized

by a weight vector & € R ', applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain l_i'l.

Graph Attention Networks (GAT)

Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
. # Edges 5429 4732 44338 818716
Paper Datasets: # Features/Node 1433 3703 500 50

Classes 7 6 3 121 (multilabel)
Training Nodes 140 120 60 44906 (20 graphs)
Validation Nodes 500 500 500 6514 (2 graphs)
Test Nodes 1000 1000 1000 5524 (2 graphs)

Graph Attention Networks (GAT)

Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed.
GCN-64* corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive
Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
Pa er ReSUItS' MoNet (Monti et al., 2016) 81.7+0.5% — 78.8 + 0.3%
p) GCN-64* 814+05% 709+0.5% 79.0+0.3%
GAT (ours) 83.0+07% 725+0.7% 79.0+0.3%

Table 3: Summary of results in terms of micro-averaged F; scores, for the PPI dataset. GraphSAGE*
corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture.
Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention
mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive
Method PPI
Random 0.396
MLP 0.422

GraphSAGE-GCN (Hamilton et al., 2017) 0.500
GraphSAGE-mean (Hamilton et al., 2017) 0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al., 2017) 0.600

GraphSAGE* 0.768
Const-GAT (ours) 0.934 + 0.006
GAT (ours) 0.973 £+ 0.002

GraphSAGE vs. Graph Attention Networks

1.007 e SAGE
mmm GAT

0.95 A

o
©
o

Test Accuracy

0.85 A

0.80 A

0.75 -

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8 Epoch 9 Epoch 10
Epochs

GraphSAGE vs. Graph Attention Networks

Potential reasons for difference in performance:

d SAGE is more efficient in aggregating neighbor information
3 SAGE model computes node representations by aggregating the representations of its neighbors using a mean or
max-pooling operation.
GAT model uses an attention mechanism to weight the neighbor representations, which may not be as efficient when the

neighborhood sizes are large.
d SAGE can better capture local graph structure
0 SAGE model aggregates neighbor representations by performing a fixed number of message-passing steps.

GAT model uses an attention mechanism to weight the neighbor representation.

GraphSAGE vs. Graph Attention Networks

Potential reasons for difference in performance:
[PyTorch Geometric Reddit dataset may be better suited for SAGE
A If the graph has many small subgraphs, the SAGE model may be better at capturing the local structure within
each subgraph
d GAT’s hyperparameters may not be optimized for the PyTorch Geometric Reddit dataset
A GAT model has several hyperparameters that can affect its performance, such as the number of attention

heads, the hidden dimension size, and the dropout rate

Next steps

3 Apply FlashAttention

A Community Detection
A Challenge: Find and configure
memory-efficient methods to
identify and visualize groups in

graph data
A NetworkX
d graph tool

A Network evolution

FlashAttention by Hazy Research at Stanford

Uses self-attention mechanisms similarly to GATs, but aims to further reduce memory

usage by a process called tiling.

FlashAttention is I0-aware, which means it accounts for reads and writes across various
levels of GPU memory. Overall, it requires fewer accesses to the GPU’s high bandwidth

memory (HBM) and is optimized for a variety of static RAM sizes.

Compared to more primitive attention mechanisms, FlashAttention boasts:
[faster model training
A higher quality models

A greater memory efficiency

FlashAttention by Hazy Research at Stanford

S\ SRAM: 19 TB/s (20 MB)
SRAM

I LB 1.5 TB/s (40 GB)
HBM

(ETTNET T4 DRAM: 12.8 GB/s
(CPU DRAM) (>17B)

Memory Hierarchy with
Bandwidth & Memory Size

K:dxN

Q:Nxd

Inner Loop

sm(QK"V: N xd

Outer Loop

Copy Block to SRAM
Outer Loop

Compute Block
on SRAM

- - = o]

Output to HBM

Inner Loop

FlashAttention

3
3
[}
=
[
o
o
T

V:NXd

doon 423nQ

Time (ms)

Attention on GPT-2

]

PyTorch

j Matmul

Matmul

Dropout

Softmax

Fused

Mask Kernel
—

FlashAttention

FlashAttention by Hazy Research at Stanford

Table 2: GPT-2 small and medium using FLASHATTENTION achieve up to 3x speed up compared to Huggingface
implementation and up to 1.7X compared to Megatron-LM. Training time reported on 8xA100s GPUs.

Model implementations OpenWebText (ppl) Training time (speedup)
Faster model GPT-2 small - Huggingface [87] 18.2 9.5 days (1.0x)
S GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
trammg' GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5x%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

FlashAttention by Hazy Research at Stanford

Table 6: We report the first Transformer
model that can achieve non-random perfor-
mance on Path-X and Path-256.

_ _ Model Path-X Path-256
Higher quality Transformer X
models: Linformer [84]

Linear Attention [50]
Performer [12]
Local Attention [80]
Reformer [51]
SMYRF [19]
FLASHATTENTION 61.4
Block-sparse FLASHATTENTION 56.0 6

X X X X X X X

X
X
X
X
X
X
X
3.

1

FlashAttention by Hazy Research at Stanford

Attention Runtime (Fwd Pass + Bwd Pass) = Attention Memory Usage
107 -~ @

2z Crossover Points £ 20 -

210’ %}

b= ué 10 A
Reduced & 10°- A 2

- - '-I- — _l’ T T T X] T T 1
memory usage. 128 256 512 1024 2048 4096 8192 = 256 8K 16K 32K 64K
Sequence Length Sequence Length
= = = = = FlashAttention PyTorch Attention Linformer Attention
= = = = Block-Sparse FlashAttention Megatron Attention OpenAl Sparse Attention

Figure 3: Left: runtime of forward pass + backward pass. Right: attention memory usage.

References

1. Petar Veli¢kovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
Attention Networks. arXiv preprint arXiv:1710.10903 [stat.ML], 2018.

2. Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and Memory-Efficient
Exact Attention with |IO-Awareness. arXiv preprint arXiv:2205.14135v2 [cs.LG], 2022

3. William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs. arXiv
reprint arXiv:1706.02216v4 [cs.Sl1]. 2018

4. https://github.com/pyg-team/pytorch _geometric

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://github.com/pyg-team/pytorch_geometric

