

LA Hillside Road Demand Analysis

Junwon Choi, B.S. in Data Theory (University of California, Los Angeles, 2024) Sensors and Robotics for Infrastructure Lab (SRI Lab)

Objectives

<u>Main:</u> Provide an alternative method of **estimating road demand in the hillside street segments of the LA transportation system** using graph data and the LEHD Origin-Destination Employment Statistics (LODES) dataset from the U.S. Census Bureau.

Additional: Visualize traffic estimates based on demographic data.

Packages/Models Used (Python)

Spatial Data Packages

UCLA Samueli

- GeoPandas: geospatial data handling
- □ Shapely:
- Rtree:
- NetworkX:
- geometry (block) object handling + manipulation
- e: spatial indexing
 - : shortest path algorithm implementation
- □ SciKit-Gstat: geostatistics models (Variogram, OrdinaryKriging)

Dijkstra Algorithm:

Key Models

□ Kriging Interpolation:

shortest path computation

[NetworkX - single_source_dijkstra_path] weight interpolation for unidentified points [SciKit-Gstat - Variogram + OrdinaryKriging]

Datasets

□ Block shapefile:

Deputation Origin-Destination:

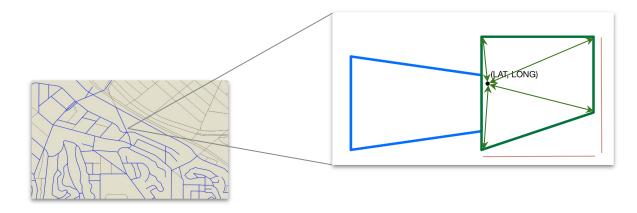
geocode + polygons of blocks in LA

number of jobs/workers based on home and work Census Block

Graph representation of LA (hillside):

<u>Node:</u> Coordinates of road (intersection) points <u>Edge:</u> Roads (node connections)

Step 1: Block Determination


Task: Identify which block each node belongs to.

Approach: Check node against block boundaries.

 \rightarrow Node must be contained within the 4 block boundary coordinates.

Challenge: Computationally demanding.

Solution: Utilize R-tree indexing for efficient finding of intersecting search rectangles.

Step 2: Node Origin-Destination Data Pairing

Task: Combine results from Step 1 with the Origin-Destination dataset to append job/worker quantity for each node.

Approach: Series of indexing, merging, expanding rows to produce merged dataframe.

Challenge: Duplication of block usage.

Solution: Create (distributed) adjustment columns to account for block usage duplication.

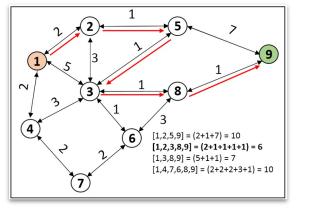
+

Block geocode (work)	Block geocode (home)	S000	 SI03
÷	E	÷	:
06037135 2052007	60014001 001003	21	 3
:	:	÷	:

Origin-Destination

Step 1 Results

Node #	Block geocode	Block polygon
:	E	÷
123	060371352052007	<polygon ((-118.668<br="">34.183, -118.668 34.183, -118.667 34.183, -118.667 34.18></polygon>
:	÷	÷



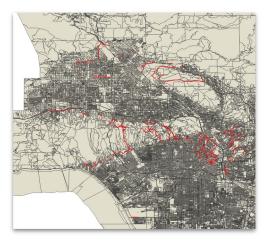
Step 3: Shortest Path Determination

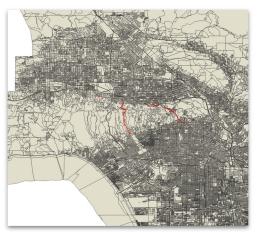
Task: Implement shortest path algorithm to approximate optimal traveling path between two nodes.

Approach: Apply the Dijkstra Single-Source algorithm to all nodes in dataset.

nx.single_source_dijkstra_path - computes the shortest paths between a source node and all nodes reachable from that node

Dijkstra's Algorithm (Source)

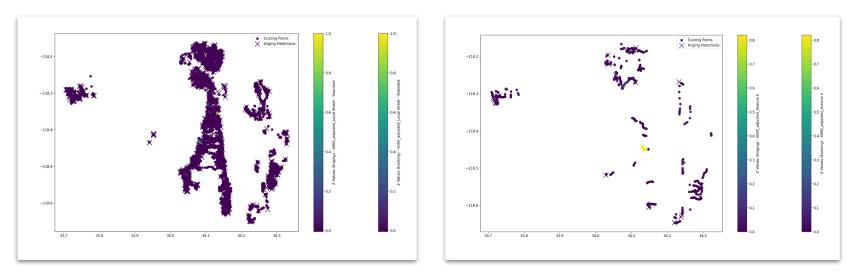



Step 4: Path Usage Estimation

Task: Compute road demand based on results from Step 3.

Approach: Efficiently iterate over all node-to-node connections from all shortest paths to compute relative usage for each road.

Graph in QGIS ["S000_adjusted" >= 0.01]


Graph in QGIS ["S000_adjusted" >= 0.50]

Step 5: Address Missing Weights - Kriging

Task: Address nodes with unidentified usage levels.

Approach: Utilize Kriging interpolation to estimate missing levels based on neighboring nodes.

Kriging results plotted [Left: S000/Local Street, Right: S000/Avenue II]