
ArXiv Data and Article
Classification

Junwon Choi, Reuben Rosenberg, Mabel Huynh

Dataset Description

- ArXiv Dataset from Cornell University
- Over 1.7 million research papers and articles
- Contains: article titles, authors, categories, abstracts, full text PDFs, and

more
- 158 subcategories in the system
- Each article can be placed into multiple categories

We only pulled articles from 2018 to 2020 (inclusive):
- 15,771 articles
- 3764 unique category combinations
- 158 unique subcategories
- 20 unique main categories

1. How can one be expected to effectively navigate such a large number of
classes when performing research?

2. How does one know which categories to assign to their own papers?

3. Is there an efficient way to organize such a great variety of papers, while
reducing the number of difficult to navigate categories?

Questions/Motivations

- Each article has a lot of information, we
only care about abstracts and
classifications

- Similar to homework 3, we must remove all
stop words and punctuation

- Use TF-IDF vectorization to convert each
abstract into a vector

- Create a dataframe with each abstract
vector and its associated category list

Data retrieved

Stop words and
punctuation

removed

TF-IDF
Vectorization

Create
Dataframes

Preprocessing

High level overview

K-Means++

DBSCAN
(Density-Based Spatial

Clustering of Applications with
Noise)

Subsetting data
+

Text processing

ArXiv data
(abstract,
category)

Truncated
SVD

TF-IDF
Vectorizati

on

ANNOY
(Approximate Nearest

Neighbors)

fastText

KNN

Random Forest

Compare results

Output

- Goal
- Determine if an organization system with fewer categories is possible
- Create a clustering system to pass into the paper retrieval tool

- Used 2 different clustering algorithms
- DBSCAN
- K means

- Models are evaluated by silhouette score, a measure of
how well-defined and distinct the clusters are

Unsupervised Learning

- Density Based Spatial Clustering in
Applications with Noise

- Advantages
- Can learn arbitrary shapes
- Number of clusters is not specified

- Disadvantages
- Slow with high dimensional data

- Solved by using Truncated SVD
- Best silhouette score of 0.34, but

classified large number of points as
noise. Data structure does not work
well with this model

DBSCAN

K-Means (K-Means++)

- Best Silhouette Score ~ 0.01
- Worse score, but we believe it

fits the data more appropriately
- Using our trained K means on

500 clusters, we pass it to
ANNOY model

- Based on inertia values (elbow
method) & silhouette scores, we
found the model preferred greater
amounts of clusters (future
improvement)

K-Means (K-Means++)

- Implement ANNOY model with the
K means results

- Approximate Nearest Neighbors
(Oh Yeah)

- Rather than using it as a
classification tool, use it to return
similar papers

Paper Retrieval Tool

"Testing High-dimensional Covariance Matrices under the Elliptical Distribution
and Beyond" (math.ST - Statistics Theory)

Paper Retrieval Tool Results

- How can we effectively classify our own paper?
- Implement 3 supervised models

- K Nearest Neighbors
- Random Forest
- FastText

- Checked classification on 21 broad categories
- Math, Physics, Statistics, etc.

- And 157 subcategories
- Math- Machine Learning, Statistics - Theory, etc

Supervised Learning

- Train many decision trees, and output
the aggregate decision

- Specific Categories: 11.525%
- Broad Categories: 50.845%

- Worst performance in both specific and
broad categories

Random Forest

- Select the category that is most
common among the k nearest
neighbors

- Specific Categories: 20.342%
- Broad Categories: 56.4452%

- Best performance in broad categories

K-Nearest Neighbors

Efficient text classification model developed by Facebook AI

Key features:

- Word embeddings
- For both words & sub-words

- N-gram features (best N-gram value was 1 for our dataset)
- Hierarchical softmax

- Logarithmic reduction in the number of computations needed to compute the
softmax probabilities. No need to compute probabilities for every label!

- Instead, we follow a binary tree
- Faster than linear classifiers + complex NN

Results:

- Specific Categories: 27.179%
- Broad Categories: 54.892%

fastText
Continuous Bag of Words (CBOW):

Sample 1 Input Actual Category: [math.st | econ.EM | stat.ME]
Sample 1 Output Prediction: [state.ST] 19.7% | [stat.SH] 19.96% | [stat.ME] 17.6%

- Introduced 2 new tools to help navigate the ArXiv repository
- Future research could involve applying these processes to other large

datasets. Or expanding on the number of tools
- Ideally these allow for faster research, and an easier way to upload

papers and articles
- Almost instant retrieval once clustering models are trained!

- Proposed new and efficient method for contextual search & retrieval
- More tailored information than simple search using keywords in search bar

Conclusion

High level overview

K-Means++

DBSCAN
(Density-Based Spatial

Clustering of Applications with
Noise)

Subsetting data
+

Text processing

ArXiv data
(abstract,
category)

Truncated
SVD

TF-IDF
Vectorizati

on

Compare results

ANNOY
(Approximate Nearest

Neighbors)

fastText

KNN

Random Forest

Compare results

Output

